Short Time Existence and Borel Summability in the Navier-stokes Equation in R

نویسندگان

  • O. COSTIN
  • S. TANVEER
چکیده

0 eU(x, p)dp t ∈ C, Re 1 t > α, and we estimate α in terms of ‖v̂0‖μ+2,β and ‖f̂‖μ,β . We show that ‖v̂(·; t)‖μ+2,β < ∞. Existence and t-analyticity results are analogous to Sobolev spaces ones. An important feature of the present approach is that continuation of v beyond t = α−1 becomes a growth rate question of U(·, p) as p → ∞, U being is a known function. For now, our estimate is likely suboptimal. A second result is that we show Borel summability of v for v0 and f analytic. In particular, Borel summability implies a the Gevrey-1 asymptotics result: v ∼ v0 + P∞ m=1 vmt m, where |vm| ≤ m!A0B 0 , with A0 and B0 are given in terms of to v0 and f and for small t, with m(t) = ⌊B −1 0 t −1⌋,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divergent Expansion, Borel Summability and 3-D Navier-Stokes Equation

We describe how Borel summability of divergent asymptotic expansion can be expanded and applied to nonlinear partial differential equations (PDEs). While Borel summation does not apply for nonanalytic initial data, the present approach generates an integral equation applicable to much more general data. We apply these concepts to the 3-D Navier-Stokes system and show how the integral equation a...

متن کامل

Divergent expansion, Borel summability and three-dimensional Navier-Stokes equation.

We describe how the Borel summability of a divergent asymptotic expansion can be expanded and applied to nonlinear partial differential equations (PDEs). While Borel summation does not apply for non-analytic initial data, the present approach generates an integral equation (IE) applicable to much more general data. We apply these concepts to the three-dimensional Navier-Stokes (NS) system and s...

متن کامل

Borel Summability of Navier-stokes Equation in R and Small Time Existence

0 eU(x, p)dp t ∈ C, Re 1 t > α, and we estimate α in terms of ‖v̂0‖μ+2,β and ‖f̂‖μ,β . We show that ‖v̂(·; t)‖μ+2,β < ∞. Existence and t-analyticity results are analogous to Sobolev spaces ones. An important feature of the present approach is that continuation of v beyond t = α−1 becomes a growth rate question of U(·, p) as p → ∞, U being is a known function. For now, our estimate is likely subopt...

متن کامل

Power and Exponential-power Series Solutions of Evolution Equations

1.1. Brief overview. The theory of partial differential equations when one, or more variables, is in the complex domain, and approaches a characteristic variety has only recently started to develop. In their paper [11], generalized in [12], O. Costin and S. Tanveer proved existence and uniqueness of solutions with given initial conditions, for quasilinear systems of evolution equations in a lar...

متن کامل

NONLINEAR EVOLUTION PDES IN R+ × Cd: EXISTENCE AND UNIQUENESS OF SOLUTIONS, ASYMPTOTIC AND BOREL SUMMABILITY PROPERTIES

= 0; u(x, 0) = uI(x) with u ∈ C, for t ∈ (0, T ) and large |x| in a poly-sector S in C (∂ x ≡ ∂ j1 x1∂ j2 x2 ...∂ jd xd and j1 + ... + jd ≤ n). The principal part of the constant coefficient n-th order differential operator P is subject to a cone condition. The nonlinearity g and the functions uI and u satisfy analyticity and decay assumptions in S. The paper shows existence and uniqueness of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010